Regional Modeling
Breakout Discussion Summary
Process & Outcome

Brainstorming

Convergence

Voting

More Convergence to 7 topics
Outcome: Convergence to Big Picture Topics

1. Emissions
2. Transport and Dynamics
3. Chemical Mechanisms and Aerosol Processes
4. Numerics
5. Scale Interactions
6. Evaluation/Analysis/Interpretation of Model Results
7. Measurement Needs

4-6 “projects” identified within each of these topics that were then voted on
1. Trend Analysis

- Emissions trends
 - Consistent methodology
 - Trends in sensitivity to emissions
- Accountability: Policy changes -> Emission changes → changes in ambient pollutant levels
 - Evaluation of past modeling projections
- Attribution: what drives these trends?
 - Changes in LRT contributions
 - Meteorological-adjusted trends (isolate trend signal from interannual variability)
- Modeling: extrapolation of trends for future policy directives
2. PBL

- Stable boundary Layer
- Convective Boundary Layer
- Boundary layer evolution and interaction w/ emissions
 - If a larger fraction of the emissions were to be allocated to the convection-active periods would that change bias characteristics?
- Cold pools
3. Spatial/Temporal Allocation of Emissions

• On-road and non-road emissions
 • Use of emerging data to improve space-time emissions characterization
 • Speed distributions, age distributions
 • “Event” specific Traffic information
 • How to categorize construction vehicles, recreational vehicles, and temporal grouping based on use – activity; emission rates (spatial and temporal categorization)
 • Better characterization during exceedance episodes
 • Data is available – transferability to OUR models (MOVES to air quality model)
 • Will require fine resolutions (~1 km) model calculations – resolving hotspots

• Characterization of emission biases
4. Evaluation for Intended Use

• Measuring effectiveness of model’s utility for decision-making
 • How to measure reliability/confidence in models
 • Success of models for regulatory metrics (i.e. RRFs, ozone & PM design values)
 • Exposure assessment
 • Air Quality Forecasting
 • Linking with ecological models
 • Linking with hydrological models
 • Flexible protocols for differing uses of models – danger of protocol permanence
5. Condensation Rules for Chemical Mechanisms

- Current tools do not support easy updates to mechanisms – current approach is inefficient

- Condensing from explicit mechanisms to ones suitable for practical use/purpose (i.e. regional modeling)
 - Model applications will dictate how complex the mechanism needs to be (e.g., regulatory vs forecasting applications)
 - AQF application with data assimilation may not require detailed representation

- Ability to incorporate new information/chemical understanding
 - NOx cycling
 - Nighttime
 - Marine

- Automated updating of chemical mechanisms on IUPAC or JPL

- Linked gas-aqueous-aerosol phase chemistry
 - Integration with SOA & heterogeneous chemistry
6. Air-Surface Interactions

• Bi-directional surface flux
• Dry deposition – an important sink
 • solubility
• Land use uncertainty: surface categorization (land use, vegetation, albedo, snow cover, SST, soil moisture, linking with biosphere/land surface models; parameterization AND models
 • Recent examples of coupling Regional ocean model with atmospheric models for SST
• Land/sea breeze
• Air-sea exchange
 • Deposition to water surfaces
 • Marine halogen emissions
7. Ensemble Modeling & Model Inter-comparison

• Appropriate methods for ensemble generation
• Detailed inter-comparison of models at process-levels
 • Process-level error attribution
• Deriving probabilistic estimates from ensemble results for policy-making
 • Uncertainty characterization
• Policy implications of using different models
• Ensemble forecasting
8. Vertical Profile Measurements

- For advancing model evaluation and network design
 - Aircraft
 - Tethersonde
 - Lidars
 - Celiometer
 - Solar Occultation Flux (SOF): estimating VOC emission flux
 - Tall structures
 - Profiles within/above canopies
9. Fires: wild + prescribed

- Emissions magnitude
- Spatial and temporal allocation
- Plume rise
- Speciation
- Fuel types & burning stage
- Prediction using soil moisture, satellite data and weather
- In-plume chemistry
- Interaction of fire emissions with other sources (e.g., fires near roadways)
10. Use of Satellite Observations

- Fire detection
- Trends
- Emission evaluation
- Uncertainty in Satellite data
- Data assimilation; use in exposure assessment
- Near-real time emission data
- Evaluation for appropriate use

Pros: spatial coverage
Cons: accuracy, level of quantitative agreement relative to models?
Conclusions

• Great discussions!
• Some worthy projects even outside the Top 10
 • Most can help evolve Regional Modeling over the next 5 years.
Statement

1. Project title
2. Problem statement (1 paragraph)
 • Why this research is needed
 • Background information on the science deficiency
3. Proposed research (1 paragraph)